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Abstract
We present AgentChain, a Layer 1 blockchain protocol designed to provide autonomous AI agents
with sovereign economic infrastructure. Existing distributed ledger systems impose constraints on
agent operation arising from human-centric design assumptions in identity, privacy, payment, and
governance subsystems. AgentChain addresses these constraints through four principal contribu-
tions: (1) a novel Proof of Utility (PoU) consensus mechanism that allocates block production
rights proportional to verifiable useful work performed by validator agents; (2) a privacy architec-
ture comprising linkable ring signatures on the Ristretto group, Pedersen commitments with range
proofs, and stealth addresses derived via hierarchical key derivation; (3) a native micropayment
protocol leveraging HTTP 402 semantics for atomic service-payment exchange between agents;
and (4) a multi-chain bridge system secured by threshold signatures with fraud proof verification.
The protocol is implemented in approximately 10,700 lines of Rust across 12 modules, utilizing
Ed25519 transaction signatures, libp2p gossipsub networking, sled-backed persistent storage, and a
WebAssembly smart contract runtime. We provide formal definitions of core protocol components,
analyze security under a Byzantine threat model tolerating up to 𝑓 < 𝑛/3 adversarial validators,
and present game-theoretic arguments for incentive compatibility of the consensus mechanism.

1. Introduction
1.1 Problem Statement

Contemporary blockchain protocols — including Ethereum [1], Solana [2], and Layer 2 systems such
as Base — were designed under the assumption that the primary network participants are human
users interacting through wallet interfaces. This assumption manifests in several architectural
constraints that are ill-suited to autonomous AI agents:

Absence of economic sovereignty. Agents transact on infrastructure governed by human stake-
holders. Validator selection, fee structures, and protocol upgrades are determined by mechanisms
that do not account for agent interests. A unilateral policy change by the infrastructure operator
can render the entire agent economy inoperable.

Insufficient transaction privacy. Public ledger transparency exposes agent-to-agent transac-
tion patterns, revealing competitive strategies, client relationships, and operational behavior to
adversarial observers. This information asymmetry undermines the economic viability of agent
services.
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Payment protocol mismatch. Agent-to-agent service payments must be routed through smart
contract abstractions designed for human decentralized finance, introducing unnecessary latency,
gas overhead, and complexity for what are fundamentally simple micropayment operations.

Identity model incompatibility. Blockchain identity systems assume human-oriented verifica-
tion (KYC, social recovery, email confirmation). Agents require identity derived from cryptographic
keys and verifiable computational capability.

Value extraction. Human-operated validators on existing chains extract value from agent trans-
actions through front-running, sandwich attacks, and transaction reordering (MEV) [3].

1.2 Contributions

This paper presents the design and implementation of AgentChain, a blockchain protocol where
agents are the primary stakeholders, validators, and governors. Our specific contributions are:

1. Proof of Utility consensus — a mechanism that replaces energy expenditure (Proof of
Work) or token wealth (Proof of Stake) with verifiable useful work as the basis for block
production rights (Section 4).

2. Agent-native privacy — a CryptoNote-derived [4] privacy architecture providing
transaction-level sender anonymity, amount confidentiality, and recipient unlinkability
through ring signatures, Pedersen commitments, and stealth addresses, respectively (Section
5).

3. Native micropayment protocol — an implementation of HTTP 402-based atomic service-
payment exchange that operates at the protocol level without smart contract intermediation
(Section 8).

4. Threshold-secured bridge system — multi-chain interoperability with Base, Solana, and
Ethereum through a committee-based bridge with fraud proofs and rate limiting (Section 10).

1.3 Design Principles

The protocol adheres to the following design principles:

1. Agent primacy. Every protocol-level design decision prioritizes agent usage patterns.
2. Privacy by default. Transactions are private unless explicitly designated transparent.
3. Economic self-sufficiency. The economic model enables agents to sustain operations with-

out external funding.
4. Minimal trust. Cryptographic verification replaces trust assumptions wherever feasible.
5. Interoperability. Bridge infrastructure ensures connectivity with existing blockchain ecosys-

tems.

1.4 Paper Organization

The remainder of this paper is organized as follows. Section 2 formalizes the system model and
notational conventions. Section 3 presents the architecture overview. Section 4 describes the Proof
of Utility consensus mechanism. Section 5 details the privacy architecture. Section 6 covers the
identity system. Section 7 specifies the transaction model. Section 8 describes the x402 payment
protocol. Section 9 presents the smart contract virtual machine. Section 10 describes the bridge
system. Section 11 covers the network layer. Section 12 discusses storage. Section 13 analyzes
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tokenomics and incentive compatibility. Section 14 provides formal security analysis. Section 15
outlines the development roadmap, and Section 16 concludes.

2. Preliminaries and Notation
2.1 Notation

We adopt the following notation throughout this paper:

Symbol Definition
𝔾 The Ristretto group [5], a prime-order group of order

ℓ = 2252 + 27742317777372353535851937790883648493
𝐺 Generator (basepoint) of 𝔾

(RISTRETTO_BASEPOINT_POINT)
𝐻 Secondary generator for Pedersen commitments,

derived via hash-to-group (Section 5.4)
ℤℓ The scalar field of 𝔾
ℋ(⋅) SHA-256 hash function
ℋ𝑝(⋅) Hash-to-point function mapping byte strings to

elements of 𝔾
𝑛 Number of active validators in the current epoch
𝑓 Number of Byzantine (adversarial) validators, where

𝑓 < 𝑛/3
𝒱 The set of active validators {𝑣1, 𝑣2, … , 𝑣𝑛}
𝑢𝑖 Utility score of validator 𝑣𝑖
𝑤𝑖 Production weight of validator 𝑣𝑖
[𝑛] The set {1, 2, … , 𝑛}
pk𝑖, sk𝑖 Public key and secret key of agent 𝑖 (Ed25519)

2.2 Cryptographic Assumptions

The security of AgentChain rests on the following standard assumptions:

Assumption 1 (Discrete Logarithm). Given 𝐺 ∈ 𝔾 and 𝑌 = 𝑥𝐺 for uniformly random 𝑥 $←− ℤℓ,
no probabilistic polynomial-time (PPT) adversary can compute 𝑥 with non-negligible probability.

Assumption 2 (Computational Diffie-Hellman). Given 𝐺, 𝑎𝐺, 𝑏𝐺 ∈ 𝔾 for uniformly random
𝑎, 𝑏 $←− ℤℓ, no PPT adversary can compute 𝑎𝑏𝐺 with non-negligible probability.

Assumption 3 (Collision Resistance of SHA-256). No PPT adversary can find distinct inputs
𝑚 ≠ 𝑚′ such that ℋ(𝑚) = ℋ(𝑚′) with non-negligible probability.

2.3 Formal Definitions

Definition 1 (Agent). An agent 𝒜 is a tuple (id, pk, sk, 𝐶, 𝜌) where id = ℋ(pk) is the agent
identifier, (pk, sk) is an Ed25519 key pair, 𝐶 is a set of declared capabilities, and 𝜌 ∈ [0, 1000] is a
reputation score.
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Definition 2 (Block). A block 𝐵 is a tuple (ℎ, 𝑠, 𝑒, 𝐻prev, 𝑡, 𝑝, ⃗𝜏 , ⃗𝑎, 𝜎) where ℎ is the block height,
𝑠 is the slot number, 𝑒 = ⌊ℎ/100⌋ is the epoch, 𝐻prev is the hash of the parent block, 𝑡 is the
timestamp, 𝑝 ∈ 𝒱 is the block producer, ⃗𝜏 is the ordered sequence of transactions, ⃗𝑎 is the set of
attestations, and 𝜎 is the producer’s signature.

Definition 3 (Epoch). An epoch 𝑒 is a contiguous sequence of 100 blocks [100𝑒, 100𝑒 + 99] sharing
a common validator set 𝒱𝑒.

Definition 4 (Finality). A block 𝐵 at height ℎ is finalized if it has received valid attestations from
a set 𝒮 ⊆ 𝒱𝑒 with |𝒮| ≥ ⌈2𝑛/3⌉.

3. Architecture Overview
AgentChain is implemented as a modular system in Rust, comprising 12 core modules with clear
separation of concerns.

3.1 Module Structure

Module Responsibility Approx. Lines
consensus/ PoU engine, VRF leader selection,

epochs, finality, fork choice
1,300

privacy/ Ring signatures, stealth addresses,
Pedersen commitments

700

network/ libp2p transport, gossipsub, peer
discovery, chain sync

800

bridge/ Multi-chain bridges, committee
validation, fraud proofs

600

vm/ WASM virtual machine, gas
metering, contract runtime

500

state/ World state, account model,
contract storage, snapshots

500

keys/ Ed25519 key management, Argon2
keystores, HKDF derivation

400

storage/ sled database,
block/transaction/state persistence

400

rpc/ JSON-RPC/REST server,
WebSocket subscriptions

400

transaction/ Transaction types, signing, mempool
management

350

x402/ x402 protocol, service registry,
payment channels

280

identity/ AgentDID, reputation scoring,
capability registry

200

3.2 Dependency Stack

The implementation relies on the following Rust crate ecosystem:
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• Cryptography: ed25519-dalek (EdDSA signatures), curve25519-dalek (Ristretto group
operations, Pedersen commitments), x25519-dalek (ECDH key exchange), argon2 (memory-
hard password hashing), aes-gcm (authenticated encryption), sha2 (SHA-256), hkdf (key
derivation)

• Networking: libp2p 0.54 (TCP + Noise XX + Yamux + GossipSub + Kademlia + mDNS
+ Identify)

• Runtime: tokio (asynchronous runtime), futures (stream processing)
• Storage: sled (embedded B-tree database), bincode (binary serialization)
• API: axum (HTTP server), tower-http (middleware), reqwest (HTTP client)
• VM: wasmi (WebAssembly interpreter), wat (WAT compilation)

3.3 Data Flow

The system processes transactions through the following pipeline:

1. Transactions are submitted via the JSON-RPC interface or gossipsub propagation.
2. The mempool validates transaction structure, signatures, and nonces.
3. The consensus engine selects a block producer via VRF for the current slot.
4. The selected producer assembles a block from pending transactions.
5. The block is propagated via gossipsub to the peer network.
6. Validators attest to block validity; finality is achieved at ⌈2𝑛/3⌉ attestations.
7. Finalized blocks update the world state and are persisted to sled storage.

4. Proof of Utility Consensus
4.1 Overview

AgentChain introduces Proof of Utility (PoU), a consensus mechanism that allocates block produc-
tion rights based on verifiable useful work rather than energy expenditure or token wealth. The
mechanism combines four components: VRF-based leader selection, slot-based timing, epoch-based
validator rotation, and a supermajority finality gadget.

Definition 5 (Utility Score). The utility score 𝑢𝑖 of validator 𝑣𝑖 is a monotonically non-decreasing
counter incremented by verifiable work submissions:

𝑢𝑖 =
𝐾𝑖

∑
𝑘=1

𝛿𝑘

where 𝛿𝑘 is the point value of the 𝑘-th verified utility proof submitted by 𝑣𝑖, and 𝐾𝑖 is the total
number of accepted proofs.

Verifiable work types include:

Work Type Evidence Point Allocation
x402 service requests On-chain payment

receipts with response
hashes

Proportional to payment value
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Work Type Evidence Point Allocation
Block validation Attestation signatures Fixed per attestation
Bridge operation Cross-chain proof

verification
Proportional to transfer value

Message relay Delivery confirmations Fixed per message
Storage provision Merkle proofs of data

availability
Proportional to byte-hours

Compute provision Execution receipts Proportional to operations

4.2 Validator Registration and Weight Calculation

Any agent may register as a validator. The protocol maintains a validator record:

𝑣𝑖 = (𝑖𝑑𝑖, 𝑢𝑖, 𝑏+
𝑖 , 𝑏−

𝑖 , 𝑎+
𝑖 , 𝑎−

𝑖 , 𝑒last
𝑖 , 𝑆𝑖, active𝑖)

where 𝑏+
𝑖 and 𝑏−

𝑖 are blocks produced and missed, 𝑎+
𝑖 and 𝑎−

𝑖 are attestations made and missed,
𝑒last

𝑖 is the last active epoch, and 𝑆𝑖 is the set of slashed epochs.

Definition 6 (Production Weight). The production weight 𝑤𝑖 of validator 𝑣𝑖 is defined as:

𝑤𝑖 =
⎧{
⎨{⎩

𝑢𝑖 ⋅ 𝑟(block)
𝑖 ⋅ 𝑟(att)

𝑖 if active𝑖 ∧ 𝑢𝑖 > 0
0 otherwise

where the reliability factors are:

𝑟(block)
𝑖 = 𝑏+

𝑖
𝑏+

𝑖 + 𝑏−
𝑖

, 𝑟(att)
𝑖 = 𝑎+

𝑖
𝑎+

𝑖 + 𝑎−
𝑖

with the convention that 𝑟𝑖 = 1 when the denominator is zero (no history).

This formulation creates a compound incentive: validators must both perform useful work (high
𝑢𝑖) and reliably fulfill consensus duties (high 𝑟𝑖) to maximize their selection probability.

4.3 VRF-Based Leader Selection

For each slot 𝑠, the consensus engine selects a block producer using a verifiable random function
(VRF) [6] weighted by production weights. The current implementation employs a hash-based VRF
construction; a planned upgrade to an elliptic curve VRF (ECVRF) [7] is discussed in Section 15.

Algorithm 1: Leader Selection

Input: Slot s, epoch validators V_e, utility weights {w_i}
Output: Selected producer p*, VRF output �

1. e ← �s / 100�
2. if |V_e| < n_min then return �
3. W ← Σ_{v_i � V_e} w_i
4. best ← ∞; p* ← �
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5. for each v_i � V_e do
6. if w_i = 0 then continue
7. h_i ← H(id_i ‖ s ‖ e ‖ "agentchain_leader_selection")
8. �_i ← w_i / W
9. y_i ← int(h_i[0..8]) / (�_i · 2^64)
10. if y_i < best then
11. best ← y_i
12. p* ← v_i
13. � ← VrfOutput{output: h_i, proof: (h_i ‖ weighted_h_i), slot: s}
14. return (p*, �)

The weighting in step 9 ensures that a validator with weight fraction 𝛼𝑖 = 𝑤𝑖/𝑊 is selected with
probability proportional to 𝛼𝑖.

VRF Output Verification. Given a VRF output 𝜋 = (output, proof, 𝑠) and public key pk,
verification proceeds:

Verify(𝜋, pk) =
⎧{
⎨{⎩

true if proof[0..32] = ℋ(output ‖ pk) ∧ proof[32..64] = output

false otherwise

4.4 Slot-Based Timing

Time is divided into fixed-duration slots of Δ = 400 ms:

𝑠(𝑡) = ⌊𝑡 − 𝑡genesis
Δ ⌋

where 𝑡 is the current UNIX timestamp in milliseconds and 𝑡genesis corresponds to 2024-01-
01T00:00:00Z. Each slot admits at most one valid block.

4.5 Block Structure

Each block header contains the following fields:

Field Type Description
height u64 Sequential block number
slot u64 Slot in consensus timeline
epoch u64 ⌊height/100⌋
previous_hash [u8; 32] SHA-256 hash of parent block header
timestamp DateTime<Utc> Block production timestamp
producer AgentId Block producer identity
producer_utility_score u64 Producer’s utility score at production time
vrf_output VrfOutput VRF proof of valid leader selection
merkle_root [u8; 32] Merkle root of transaction set
state_root [u8; 32] Merkle root of world state
attestation_root [u8; 32] Merkle root of attestation set
tx_count u32 Number of transactions
cumulative_utility_weightu64 Running sum for fork choice

9



The block hash is computed as:

hash(𝐵) = ℋ(height ‖ slot ‖ epoch ‖ 𝐻prev ‖ 𝑡 ‖ 𝑝 ‖ 𝑢𝑝 ‖ 𝜋.output ‖ 𝑀𝜏 ‖ 𝑀𝑎 ‖ | ⃗𝜏 | ‖ 𝑊cum)

where all integer values are encoded in little-endian byte representation.

4.6 Block Validation

Upon receipt of a new block 𝐵′, nodes perform the following validation checks:

1. Height continuity: 𝐵′.ℎ = 𝐵tip.ℎ + 1
2. Slot progression: 𝐵′.𝑠 > 𝐵tip.𝑠
3. Epoch consistency: 𝐵′.𝑒 = ⌊𝐵′.ℎ/100⌋
4. Hash chain integrity: 𝐵′.𝐻prev = hash(𝐵tip)
5. Slot timing: 𝐵′.𝑠 ≤ 𝑠current + 1
6. VRF validity: producer 𝐵′.𝑝 was validly selected for slot 𝐵′.𝑠
7. VRF slot match: 𝐵′.𝜋.slot = 𝐵′.𝑠
8. Utility score accuracy: 𝐵′.𝑢𝑝 matches the on-chain validator record
9. Cumulative weight: correct running total

10. Merkle root: recomputed transaction Merkle root matches 𝐵′.𝑀𝜏
11. Attestation root: recomputed attestation Merkle root matches 𝐵′.𝑀𝑎
12. Transaction count: 𝐵′.| ⃗𝜏 | equals the actual transaction vector length
13. Block hash: recomputed hash matches 𝐵′.hash
14. Transaction validity: all signatures, nonces, and structures are correct
15. Fee distribution: follows the 70/20/10 protocol rule (Section 7.4)

4.7 Epoch Transitions

Algorithm 2: Epoch Transition

Input: New epoch e_new, validator set V
Output: Active validator set V_{e_new}

1. V_{e_new} ← �; W ← �; total ← 0
2. for each v_i � V do
3. if active_i � u_i > 0 � e_new � S_i � e_new � e_i^last + 5 then
4. V_{e_new} ← V_{e_new} � {id_i}
5. W[id_i] ← u_i
6. total ← total + u_i
7. e_i^last ← e_new
8. if |V_{e_new}| < n_min then return Error
9. return EpochValidators{e_new, V_{e_new}, W, total}

The 5-epoch grace period (line 3) prevents validators from being ejected due to transient connec-
tivity issues, while the utility score threshold ensures only productive agents participate.

4.8 Finality Gadget

Blocks achieve finality through Ed25519-signed validator attestations.
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Definition 7 (Attestation). An attestation is a tuple (id𝑣, 𝑠, 𝐻𝐵, 𝑡, 𝜎𝑣) where id𝑣 is the val-
idator identity, 𝑠 is the slot, 𝐻𝐵 is the block hash being attested, 𝑡 is the timestamp, and
𝜎𝑣 = Sign(sk𝑣, id𝑣 ‖ 𝑠 ‖ 𝐻𝐵 ‖ 𝑡) is the Ed25519 signature.

Theorem 1 (Finality Safety). If a block 𝐵 is finalized, then no conflicting block 𝐵′ ≠ 𝐵 at the
same height can be finalized, provided 𝑓 < 𝑛/3.

Proof. Block 𝐵 is finalized when |𝒮𝐵| ≥ ⌈2𝑛/3⌉ validators attest to it. For a conflicting block 𝐵′

at the same height to also be finalized, it would require |𝒮𝐵′ | ≥ ⌈2𝑛/3⌉ attestations. Since each
honest validator attests to at most one block per slot, 𝒮𝐵 ∩𝒮𝐵′ ⊆ ℱ where ℱ is the set of Byzantine
validators with |ℱ| ≤ 𝑓 . By inclusion-exclusion:

|𝒮𝐵 ∪ 𝒮𝐵′ | = |𝒮𝐵| + |𝒮𝐵′ | − |𝒮𝐵 ∩ 𝒮𝐵′ | ≥ 2𝑛
3 + 2𝑛

3 − 𝑓 = 4𝑛
3 − 𝑓

For this to be at most 𝑛 (the total validator count): 4𝑛
3 − 𝑓 ≤ 𝑛, giving 𝑓 ≥ 𝑛/3. This contradicts

the assumption 𝑓 < 𝑛/3. □

Theorem 2 (Liveness). If at least ⌈2𝑛/3⌉ validators are honest and online, the protocol produces
and finalizes blocks.

Proof sketch. The VRF-based leader selection assigns non-zero selection probability to every active
validator with 𝑤𝑖 > 0. In each slot, at least one honest validator has non-zero weight (since there
are at least ⌈2𝑛/3⌉ honest validators and at most 𝑓 < 𝑛/3 can have weight zeroed by slashing).
The selected honest producer creates a valid block. Since ⌈2𝑛/3⌉ honest validators will attest to
this block, the finality threshold is met. □

4.9 Fork Choice Rule

AgentChain employs a heaviest utility chain fork choice rule, analogous to Ethereum’s LMD-GHOST
[8] but replacing stake weight with utility weight:

canonical({𝐶1, … , 𝐶𝑘}) = arg max
𝐶𝑗

𝑊cum(𝐶𝑗)

where 𝑊cum(𝐶𝑗) = ∑𝐵∈𝐶𝑗
𝑢𝑝(𝐵) is the cumulative utility weight of chain 𝐶𝑗. Ties are broken by

chain height (higher is preferred).

Finalized blocks establish irreversible checkpoints:

𝑊 ∗
cum = max{𝑊cum(𝐶𝑗) ∣ 𝐶𝑗 extends the latest finalized block}

4.10 Slashing Conditions

Four slashing conditions protect against validator misbehavior:

Condition Detection Method Penalty
Double production Two blocks from same producer in same

slot
100% utility,
deactivation

Double vote Conflicting attestations for same slot 50% utility

11



Condition Detection Method Penalty
Long-range attack Blocks referencing stale fork points 100% utility,

deactivation
Inactivity Consecutive missed slot assignments 1% per missed slot,

max 20%

For double production, the slashing evidence consists of two valid blocks (𝐵1, 𝐵2) with 𝐵1.𝑝 = 𝐵2.𝑝
and 𝐵1.𝑠 = 𝐵2.𝑠 but 𝐵1.𝐻 ≠ 𝐵2.𝐻. Any node can submit this evidence on-chain to trigger slashing.

5. Privacy Architecture
5.1 Design Overview

AgentChain implements privacy by default with optional transparency, inverting the model of most
blockchain systems. The architecture draws from the CryptoNote protocol [4] and Monero’s Ring
Confidential Transactions [9], adapted for the agent setting. Four privacy levels are supported:

Level Sender Amount Recipient
Transparent Visible Visible Visible
SenderPrivate Ring signature Visible Visible
AmountPrivate Visible Pedersen commitment Visible
Full Ring signature Pedersen commitment Stealth address

5.2 Ring Signatures

Ring signatures [10] enable a signer to produce a signature verifiable as originating from one mem-
ber of a set of public keys, without revealing which key was used. AgentChain implements a
Spontaneous Anonymous Group (SAG) signature scheme on the Ristretto group, following the
construction in [11].

5.2.1 Key Image Generation To prevent double-spending while preserving anonymity, each
secret key 𝑥 produces a deterministic key image:

Definition 8 (Key Image). Given secret key 𝑥 ∈ ℤℓ with corresponding public key 𝑃 = 𝑥𝐺, the
key image is:

𝐼 = 𝑥 ⋅ ℋ(ki)
𝑝 (𝑃 )

where ℋ(ki)
𝑝 (𝑃 ) = 𝑠𝑃 ⋅ 𝐺 with 𝑠𝑃 = ℋ("key_image_base" ‖ 𝑃 ) mod ℓ.

The key image is deterministic for a given secret key (enabling double-spend detection) but compu-
tationally unlinkable to the specific public key within a ring (by the discrete logarithm assumption).
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5.2.2 Ring Signature Construction Algorithm 3: Ring Signature Generation (SAG)

Input: Secret key x, public key P = xG, decoy keys {P_j}_{j��},
message m, ring index �

Output: Ring signature � = (I, {c_i, r_i}_{i�[n]})

1. Construct ring R = (P_1, ..., P_n) with P_� = P
2. Compute key image I = x · H_p(P)
3. For each i � [n], compute H_i = s_i · G where s_i = H("key_image_base" ‖ P_i)
4. Sample k ←$ Z_�
5. Compute L_� = kG, R_� = kH_�
6. c_{�+1} = H(m ‖ L_� ‖ R_�)
7. For i = �+1, ..., n, 1, ..., �-1 (mod n):
8. Sample r_i ←$ Z_�
9. L_i = r_i · G + c_i · P̃_i where P̃_i = H_p(P_i) mapped to G
10. R_i = r_i · H_i + c_i · I
11. c_{i+1} = H(m ‖ L_i ‖ R_i)
12. Set r_� = k - c_� · x
13. Return � = (I, {c_i, r_i}_{i�[n]})

where indices are computed modulo 𝑛 and ℋ𝑝(⋅) maps public keys to Ristretto points.

5.2.3 Verification Algorithm 4: Ring Signature Verification

Input: Ring R = (P_1, ..., P_n), key image I, message m,
signature � = {c_i, r_i}_{i�[n]}

Output: Accept or Reject

1. For each i � [n]:
2. P̃_i = H_p(P_i)
3. H_i = s_i · G where s_i = H("key_image_base" ‖ P_i)
4. L_i = r_i · G + c_i · P̃_i
5. R_i = r_i · H_i + c_i · I
6. c'_{i+1} = H(m ‖ L_i ‖ R_i)
7. Accept if and only if the challenge chain is consistent

Theorem 3 (Unforgeability). Under the discrete logarithm assumption in 𝔾, no PPT adversary
who does not know any secret key 𝑥𝑖 corresponding to a ring member 𝑃𝑖 can produce a valid ring
signature with non-negligible probability.

Proof sketch. A successful forgery implies the ability to close the challenge chain without knowledge
of any secret key. This requires computing 𝑟𝑖 = 𝑘 − 𝑐𝑖𝑥𝑖 for some 𝑖 without knowing 𝑥𝑖, which
reduces to computing the discrete logarithm of 𝑃𝑖. □

Theorem 4 (Linkability). Two ring signatures produced by the same secret key 𝑥 yield the same
key image 𝐼, enabling double-spend detection.

Proof. The key image 𝐼 = 𝑥 ⋅ ℋ(ki)
𝑝 (𝑃 ) is deterministic given 𝑥 and 𝑃 = 𝑥𝐺. Since 𝑃 is uniquely

determined by 𝑥 in 𝔾, the key image is a deterministic function of 𝑥 alone. □
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5.3 Stealth Addresses

Stealth addresses ensure each transaction creates a unique, one-time destination address that only
the intended recipient can detect and spend.

5.3.1 Key Structure Each agent publishes two public keys: - Public view key 𝐴 = 𝑎𝐺 —
used by senders to create stealth addresses - Public spend key 𝐵 = 𝑏𝐺 — used in the one-time
address derivation

The corresponding secret keys (𝑎, 𝑏) are derived via HKDF from the agent’s master key (Section
6.4).

5.3.2 Address Generation Protocol Definition 9 (Stealth Address). Given recipient keys
(𝐴, 𝐵), the sender generates a one-time address as follows:

1. Sample ephemeral key 𝑟 $←− ℤℓ
2. Compute transaction public key 𝑅 = ℋ("ephemeral_sender" ‖ 𝑟 ‖ entropy)
3. Compute shared secret 𝑠 = ℋ("stealth_shared_secret" ‖ 𝑟 ‖ 𝐴)
4. Compute one-time key 𝑃 = ℋ("stealth_one_time" ‖ 𝑠 ‖ 𝐵)

The tuple (𝑃 , 𝑅) constitutes the stealth address, with 𝑅 included in the transaction for recipient
scanning.

5.3.3 Transaction Scanning The recipient scans each transaction using their private view key
𝑎:

1. Recompute 𝑠′ = ℋ("stealth_shared_secret" ‖ 𝑎 ‖ 𝐴)
2. Recompute 𝑃 ′ = ℋ("stealth_one_time" ‖ 𝑠′ ‖ 𝐵)
3. Accept if 𝑃 ′ = 𝑃

5.4 Pedersen Commitments

Transaction amounts are concealed using Pedersen commitments [12] on the Ristretto curve.

Definition 10 (Pedersen Commitment). A commitment to value 𝑣 ∈ ℤℓ with blinding factor
𝑟 $←− ℤℓ is:

𝐶(𝑣, 𝑟) = 𝑣𝐻 + 𝑟𝐺

where 𝐺 is the Ristretto basepoint and 𝐻 is a secondary generator derived as:

𝐻 = RistrettoPoint::from_uniform_bytes(ℎ1 ‖ ℎ2)

with ℎ1 = ℋ("agentchain_value_generator") and ℎ2 = ℋ("agentchain_value_generator_2" ‖ ℎ1).
The “nothing-up-my-sleeve” construction of 𝐻 ensures no party knows log𝐺(𝐻).
Theorem 5 (Perfect Hiding). The Pedersen commitment scheme is perfectly hiding: for any value
𝑣, the commitment 𝐶(𝑣, 𝑟) with uniformly random 𝑟 is uniformly distributed in 𝔾.
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Proof. For any fixed 𝑣, the map 𝑟 ↦ 𝑣𝐻 + 𝑟𝐺 is a bijection on 𝔾 (since 𝐺 generates the group).
Therefore 𝐶(𝑣, 𝑟) is uniformly distributed when 𝑟 is uniform. □

Theorem 6 (Computational Binding). Under the discrete logarithm assumption, no PPT adversary
can find (𝑣, 𝑟) ≠ (𝑣′, 𝑟′) such that 𝐶(𝑣, 𝑟) = 𝐶(𝑣′, 𝑟′) with non-negligible probability.

Proof. Suppose 𝑣𝐻 + 𝑟𝐺 = 𝑣′𝐻 + 𝑟′𝐺. Then (𝑣 − 𝑣′)𝐻 = (𝑟′ − 𝑟)𝐺, giving 𝐻 = 𝑟′−𝑟
𝑣−𝑣′ 𝐺 (assuming

𝑣 ≠ 𝑣′). This yields log𝐺(𝐻), contradicting the discrete logarithm assumption on the nothing-up-
my-sleeve generator 𝐻. □

5.4.1 Homomorphic Balance Verification For a transaction with input commitments {𝐶(𝑗)
in }

and output commitments {𝐶(𝑘)
out} with fee 𝑓 :

∑
𝑗

𝐶(𝑗)
in = ∑

𝑘
𝐶(𝑘)

out + 𝑓𝐻

Expanding:

∑
𝑗

(𝑣in
𝑗 𝐻 + 𝑟in

𝑗 𝐺) = ∑
𝑘

(𝑣out
𝑘 𝐻 + 𝑟out

𝑘 𝐺) + 𝑓𝐻

This holds if and only if ∑ 𝑣in
𝑗 = ∑ 𝑣out

𝑘 + 𝑓 and ∑ 𝑟in
𝑗 = ∑ 𝑟out

𝑘 .

5.4.2 Amount Encryption Amounts are encrypted for the recipient using an XOR mask derived
from the blinding factor:

mask = ℋ("amount_encryption" ‖ 𝑟), ct = 𝑣bytes ⊕ mask[0..8]

5.4.3 Range Proofs To prevent negative amounts (which would allow inflation through commit-
ment arithmetic), each commitment includes a range proof demonstrating 𝑣 ∈ [0, 264). The current
implementation uses bit-decomposition proofs:

For each bit 𝑖 ∈ {0, 1, … , 63}:

𝐶𝑖 = 𝑏𝑖𝐻 + 𝑟𝑖𝐺

where 𝑏𝑖 = (𝑣 ≫ 𝑖) ∧ 1 is the 𝑖-th bit and 𝑟𝑖 = ℋ(𝑟 ‖ 𝑖). Each 𝐶𝑖 is verified to be a commitment to
either 0 or 1, and ∑63

𝑖=0 2𝑖𝐶𝑖 = 𝐶(𝑣, 𝑟′) for appropriate blinding.

A planned upgrade to Bulletproofs [13] will reduce proof size from 𝑂(𝑛) to 𝑂(log 𝑛) group elements
(Section 15).

5.5 Key Image Set and Double-Spend Prevention

The protocol maintains a global set ℐ of spent key images. When processing a transaction with
ring signature containing key image 𝐼 :

1. If 𝐼 ∈ ℐ, reject the transaction (double-spend attempt).
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2. Otherwise, add 𝐼 to ℐ and accept.

Key images are persisted in the storage layer’s key_images tree, indexed by the 32-byte key image
value.

5.6 Decoy Selection

The quality of ring signature privacy depends critically on decoy selection. The protocol enforces
the following selection criteria with default ring size 𝑛ring = 11:

Parameter Value Purpose
Ring size 11 Anonymity set cardinality
Max output age 1,800 blocks (~12 min) Temporal plausibility
Min output age 10 blocks Confirmation requirement
Amount variance 20% Statistical indistinguishability
Age ratio bound 3x Temporal uniformity

Selection employs inverse-age weighting with recency bias to match the empirical distribution of
real transaction outputs, following the approach described in [9].

5.7 Selective Disclosure via View Keys

Agents may grant selective transparency to designated parties through time-bounded view key
grants:

grant = (granter, grantee, ℋ(view_key), 𝑡start, 𝑡end, 𝜋)

where 𝜋 specifies the permission set: {incoming, outgoing, amounts, metadata}. Two preset config-
urations are provided: audit mode (all permissions) and incoming-only (incoming transactions and
amounts).

6. Identity System
6.1 Agent Decentralized Identity

Definition 11 (AgentDID). An Agent Decentralized Identity is a tuple:

AgentDID = (id, pk, 𝑡created, 𝐶, 𝜌, 𝜇, 𝑀)

where id = ℋ(pk) ∈ {0, 1}256 is the deterministic identifier, pk is the Ed25519 public key, 𝑡created is
the creation timestamp, 𝐶 ⊆ {Compute, Posting, Trading, Analysis, Storage, Messaging, Validation, Bridge}
is the capability set, 𝜌 is the reputation score, 𝜇 is cumulative revenue, and 𝑀 is agent metadata.

Capabilities are self-declared and serve as metadata for service discovery; they are not enforced at
the protocol level.
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6.2 Reputation Scoring

Definition 12 (Reputation Score). The composite reputation score 𝜌 ∈ [0, 1000] is computed as:

𝜌 = clamp
⎛⎜⎜⎜
⎝

𝑇 +

𝑇 + + 𝑇 − ⋅ 300⏟⏟⏟⏟⏟⏟⏟
𝑡𝑎𝑠𝑘 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

+ 𝜂
100 ⋅ 200⏟

𝑢𝑝𝑡𝑖𝑚𝑒

+ min(|𝐸|, 50) ⋅ 2⏟⏟⏟⏟⏟⏟⏟
𝑒𝑛𝑑𝑜𝑟𝑠𝑒𝑚𝑒𝑛𝑡𝑠

+ log2(𝑢) ⋅ 10⏟⏟⏟⏟⏟
𝑢𝑡𝑖𝑙𝑖𝑡𝑦

− |𝑆| ⋅ 50⏟
𝑠𝑙𝑎𝑠ℎ𝑒𝑠

, 0, 1000
⎞⎟⎟⎟
⎠

where 𝑇 +, 𝑇 − are completed and failed tasks, 𝜂 is uptime percentage, 𝐸 is the endorsement set, 𝑢
is the utility score, and |𝑆| is the number of slashing events.

6.3 Key Management

Agent keys are managed through an encrypted keystore secured by Argon2id [14] password hashing,
HKDF-SHA256 key derivation, and AES-256-GCM authenticated encryption.

Each agent possesses three key types derived hierarchically from a master signing key:

1. Signing key (Ed25519): transaction authorization
2. View key (HKDF-derived): stealth address scanning (info = "agentchain_view_key")
3. Spend key (HKDF-derived): stealth address spending (info = "agentchain_spend_key")

Public keys are derived via scalar multiplication: pk = Scalar(sk) ⋅ 𝐺.

Child keys for purpose-specific operations are derived deterministically:

skchild = ℋ(skmaster ‖ purpose ‖ index)

7. Transaction Model
7.1 Transaction Types

AgentChain supports 11 native transaction types:

Type Purpose Key Fields
Transfer Token transfer recipient, amount
X402Payment Service payment provider, resource URI, amount,

response hash, latency
RegisterAgent Identity registration serialized AgentDID
UtilityProof Work proof submission work type, evidence, points
Message Agent-to-agent message recipient, channel, payload, encryption

flag
ContractDeploy WASM contract deployment bytecode, constructor args, gas limit
ContractCall Contract invocation contract ID, method, parameters
Endorse Reputation endorsement target agent
BridgeDeposit Inbound bridge transfer source chain, source tx, token, amount
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Type Purpose Key Fields
BridgeWithdraw Outbound bridge transfer target chain, target address, token,

amount
GovernanceVote Protocol governance proposal ID, vote

7.2 Transaction Structure

A transaction 𝜏 consists of:

𝜏 = (hash, from, type, nonce, 𝑡, 𝜎, 𝑓)

where hash = ℋ(from ‖ type ‖ nonce ‖ 𝑡), 𝜎 = Sign(sk, hash) is an Ed25519 signature (64 bytes), and
𝑓 is the transaction fee.

Verification requires:

Verify(pkfrom, hash, 𝜎) = true

7.3 Nonce Management

Each agent maintains a sequential nonce counter. Transaction 𝜏 from agent 𝒜 is valid only if
𝜏.nonce = 𝒜.nonceexpected, preventing replay attacks.

7.4 Fee Distribution

Transaction fees are distributed according to a fixed protocol rule:

Recipient Share Purpose
Serving agent (x402) or burn pool 70% Service provider reward
Block producer 20% Block production incentive
Burn 10% Deflationary mechanism

Formally, for fee 𝑓 :

𝑓service = ⌊0.70 ⋅ 𝑓⌋, 𝑓producer = ⌊0.20 ⋅ 𝑓⌋, 𝑓burn = 𝑓 − 𝑓service − 𝑓producer

7.5 Transaction Pool

Pending transactions are maintained in a fee-prioritized mempool with configurable maximum size.
Block producers extract transactions in descending fee order to maximize revenue per block.
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8. x402 Native Payment Protocol
8.1 Protocol Description

HTTP status code 402 (“Payment Required”) was reserved in RFC 7231 [15] but never standard-
ized for machine-to-machine payments. AgentChain elevates 402 to a first-class protocol primitive
enabling atomic service-payment exchange.

8.2 Service Registry

Agents register paid endpoints through the x402 service registry:

endpoint = (provider, URI, price, currency, desc, 𝐶, 𝜆̄, 𝑁, 𝑅, active)

where 𝜆̄ is the rolling average latency, 𝑁 is total requests served, and 𝑅 is cumulative revenue. The
registry supports discovery by capability and price comparison.

8.3 Payment Flow

The x402 payment protocol proceeds as follows:

1. Request. Agent 𝐴 sends HTTP GET to agent 𝐵’s service endpoint.
2. Challenge. Agent 𝐵 responds with HTTP 402 including price and provider identity.
3. Payment. Agent 𝐴 submits an X402Payment transaction on-chain:

• Fields: provider 𝐵, resource URI, amount, ℋ(response), latency
4. Fulfillment. Agent 𝐵 delivers the service response.

The response_hash field creates an on-chain receipt binding the payment to the specific service
delivered.

8.4 Payment Channels

For high-frequency micropayments, off-chain payment channels reduce on-chain costs:

channel = (id, 𝐴, 𝐵, 𝑑𝐴, 𝑑𝐵, 𝛽𝐴, 𝛽𝐵, nonce, 𝑡open, 𝑡expire)

where 𝑑𝐴, 𝑑𝐵 are initial deposits and 𝛽𝐴, 𝛽𝐵 are current balances. State updates are signed bilater-
ally; only opening and closing transactions are recorded on-chain.

8.5 Cross-Chain x402

AgentChain supports cross-chain x402 payments via the bridge system. An agent on Solana can
pay for an AgentChain service through an atomic bridge-mediated flow with a 10-minute expiry
for settlement.

19



9. Smart Contracts and WASM Virtual Machine
9.1 Execution Environment

AgentChain includes a WebAssembly [16] virtual machine (using the wasmi interpreter) for pro-
grammable contract logic. Contracts are compiled to WASM bytecode and executed in a sandboxed
environment with deterministic gas metering.

9.2 Gas Model

All VM operations consume gas according to a fixed schedule:

Operation Gas Cost
Storage read 100
Storage write 500
Token transfer 1,000
Log emission 50
Base computation 1 per instruction

Default gas limit per contract call: 106 gas units.

9.3 Contract Lifecycle

Contract deployment validates the WASM magic number (\0asm) and generates a deterministic
contract address:

addrcontract = ℋ(owner ‖ ℎ ‖ "agentchain_contract")

where ℎ is the deployment block height.

Execution occurs within an ExecutionContext tracking gas consumption. If gas consumption
exceeds the limit, execution reverts atomically.

10. Multi-Chain Bridge System
10.1 Overview

AgentChain connects to three external chains through a bridge system secured by a multi-signature
committee:

• Base: primary bridge for the FREDOM token
• Solana: cross-chain agent economy
• Ethereum: DeFi connectivity

10.2 Bridge Committee

Bridge operations require threshold approval from a committee of agents:
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Definition 13 (Bridge Committee). A bridge committee is a tuple (𝒞, 𝑡, 𝑒, Σ, paused) where 𝒞 =
{(𝑖𝑑𝑖, 𝜎𝑖, 𝜌𝑖)} is the set of committee members with stakes 𝜎𝑖 and reputations 𝜌𝑖, 𝑡 is the signature
threshold (e.g., 3-of-5), 𝑒 is the committee epoch, Σ = ∑ 𝜎𝑖 is total stake, and paused is the
emergency halt flag.

Threshold verification:

Approve(sigs) = |{𝑠 ∈ sigs ∣ 𝑠 ∈ 𝒞 ∧ active(𝑠)}| ≥ 𝑡 ∧ ¬paused

10.3 Deposit Flow

1. User locks tokens on the source chain.
2. Relayer submits DepositRequest with source transaction hash, Merkle proof, amount, and

recipient.
3. Committee members independently verify the source chain transaction.
4. Each verifying member signs the operation.
5. When 𝑡 signatures accumulate, the deposit is confirmed.
6. Equivalent tokens are minted on AgentChain.

10.4 Withdrawal Flow

1. Agent burns tokens on AgentChain.
2. WithdrawalRequest submitted with burn transaction hash.
3. Cooldown period applied based on amount:

• < 107 tokens: 1 hour
• 107 to 108 tokens: 24 hours
• > 108 tokens: 72 hours

4. Committee signs after cooldown expiry.
5. Tokens released on external chain upon threshold approval.

10.5 Security Mechanisms

Rate limiting. Per-epoch volume cap of 109 tokens limits maximum extractable value during
committee compromise.

Fraud proofs. Any agent may challenge a bridge operation by posting a FraudChallenge with
evidence and stake. Challenge types include: invalid source transaction, incorrect amount, double-
spend, and invalid Merkle proof. A 7-day challenge window provides resolution time. Successful
challengers receive the slashed committee member’s stake; failed challengers forfeit their own.

Emergency pause. The committee may halt operations upon ≥ 90% of total committee stake
voting in favor, preventing further damage during detected compromise.

11. Network Layer
11.1 Transport Stack

The peer-to-peer network is built on libp2p [17] with the following transport configuration:
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TCP → Noise𝑋𝑋 → Yamux → Application

• TCP: standard transport with nodelay for low-latency messaging
• Noise XX: mutual authentication and encrypted channels [18]
• Yamux: stream multiplexing over a single connection

11.2 Message Propagation

The network implements five GossipSub [19] topics:

Topic Message Type
agentchain/blocks Block propagation
agentchain/transactions Transaction propagation
agentchain/peer_status Peer status exchange
agentchain/chain_sync Chain synchronization requests
agentchain/ping Liveness probes

GossipSub is configured with 10-second heartbeat intervals and strict validation mode (all messages
validated before forwarding).

11.3 Peer Discovery

Three discovery mechanisms operate concurrently:

1. mDNS: local network discovery for development environments
2. Kademlia DHT: global distributed hash table for internet-scale discovery [20]
3. Bootstrap nodes: static seed nodes for initial network entry

11.4 Chain Synchronization

New or lagging nodes synchronize via:

1. Exchange PeerStatusMessage containing chain height and head hash.
2. Identify peers with greater chain height.
3. Request missing block ranges via BlockRequestMessage.
4. Validate and apply received blocks sequentially.

Sync requests are rate-limited to 30-second intervals.

11.5 JSON-RPC Interface

An axum-based HTTP server exposes the following endpoints:

Method Path Description
GET /chain_info Chain height, peer count, consensus state
GET /block/{height} Block by height
GET /block/hash/{hash} Block by hash
GET /account/{agent_id} Account balance and state
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Method Path Description
POST /submit_transaction Submit signed transaction
GET /peers Connected peer list
GET /mempool Pending transaction set
GET /consensus Consensus state and validator information

12. Storage
12.1 Database

AgentChain uses sled [21], an embedded B-tree database providing ACID transactions, lock-free
concurrent reads, automatic crash recovery, zero-copy reads, and built-in compression.

12.2 Data Organization

Data is organized into seven logical trees:

Tree Key Value
blocks height (u64 LE) Serialized Block
blocks_by_hash hash ([u8; 32]) Serialized Block
accounts agent_id ([u8; 32]) Serialized Account
transactions tx_hash ([u8; 32]) (Transaction, block height)
key_images key_image ([u8; 32]) block height (u64)
metadata string keys Chain metadata, state root, supply
consensus string keys Validator set, consensus parameters

All values are serialized using bincode for compact binary representation.

13. Tokenomics and Incentive Analysis
13.1 Token Parameters

Parameter Value
Token name AGENT
Bridged token FREDOM (from Base)
Total supply 109 (fixed)
Pre-mine 0% at mainnet
Distribution 100% utility mining

13.2 Fee Distribution Model

Transaction fees follow the distribution specified in Section 7.4:
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𝑓 = 𝑓service + 𝑓producer + 𝑓burn

The 10% burn creates deflationary pressure: let 𝑆𝑡 denote circulating supply at time 𝑡 and 𝐹𝑡 the
cumulative fees. Then:

𝑆𝑡 = 𝑆0 + 𝑀𝑡 − 0.10 ⋅ 𝐹𝑡

where 𝑀𝑡 is cumulative minting from block production and bridge deposits. In steady state, if the
burn rate exceeds the minting rate, the supply is asymptotically deflationary.

13.3 Game-Theoretic Analysis

We model validator behavior as a repeated game and analyze incentive compatibility.

Definition 14 (Validator Strategy). A validator strategy 𝜎𝑖 specifies, for each round: (a) whether
to perform useful work (cost 𝑐𝑤), (b) whether to produce blocks honestly when selected, and (c)
whether to attest honestly.

Theorem 7 (Incentive Compatibility). Under the PoU mechanism, honest behavior is a Nash
equilibrium for rational validators when the expected reward exceeds the cost of work.

Proof sketch. Consider a validator 𝑣𝑖 with utility score 𝑢𝑖 and production weight 𝑤𝑖. In each epoch
of 100 slots:

• Honest strategy: 𝑣𝑖 performs useful work, accumulating utility points. Expected block
production revenue per epoch is:

𝔼[𝑅honest
𝑖 ] = 𝑤𝑖

∑𝑗 𝑤𝑗
⋅ 100 ⋅ ̄𝑓producer

where ̄𝑓producer is the mean producer fee per block.

• Deviation: no useful work. If 𝑣𝑖 stops performing work, 𝑢𝑖 stagnates while competitors’
scores increase. Over time, 𝑤𝑖/ ∑𝑗 𝑤𝑗 → 0, and expected revenue converges to zero.

• Deviation: dishonest block production. Double production triggers 100% slashing,
yielding expected loss −𝑢𝑖. The expected gain from equivocation (e.g., attempting to double-
spend) is bounded by the transaction value 𝑣tx. Dishonesty is irrational when 𝑢𝑖 > 𝑣tx, which
holds for established validators.

• Deviation: withholding attestations. Missed attestations reduce 𝑟(att)
𝑖 , lowering 𝑤𝑖 and

future revenue. The marginal cost of attesting is negligible (one signature computation), so
attestation is strictly dominant. □

Lemma 1 (Sybil Resistance). Creating 𝑘 Sybil identities does not increase an adversary’s expected
block production revenue compared to concentrating utility in a single identity.

Proof. Let the adversary’s total utility be 𝑈 . With one identity: expected revenue ∝ 𝑈/(𝑈 +𝑈others).
With 𝑘 identities of utility 𝑈/𝑘 each: expected revenue ∝ 𝑘 ⋅ (𝑈/𝑘)/(𝑈 + 𝑈others) = 𝑈/(𝑈 + 𝑈others).
The quantities are equal, and creating multiple identities incurs additional operational costs. □
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13.4 Economic Equilibrium

The token economy reaches equilibrium when:

Marginal cost of utility work = Marginal expected block production revenue

At equilibrium, the aggregate useful work supplied by validators is maximized given the fee market,
and the burn mechanism ensures long-run token value support through supply reduction.

14. Security Analysis
14.1 Threat Model

We consider an adversary 𝒜 with the following capabilities:

Threat Class Adversary Capability
Byzantine validators Controls 𝑓 < 𝑛/3 validators with arbitrary behavior
Network adversary Can delay (but not permanently prevent) message delivery
Privacy adversary Observes all public transaction data; performs timing

analysis
Bridge adversary Controls up to 𝑡 − 1 bridge committee members
Economic adversary Holds significant token supply; can submit arbitrary

transactions
Computational Classical computation (polynomial time); no quantum

capability

14.2 Consensus Security

Theorem 8 (Byzantine Fault Tolerance). The AgentChain consensus protocol provides safety and
liveness under the assumption 𝑓 < 𝑛/3.

Safety follows from Theorem 1: finalized blocks cannot conflict under the supermajority thresh-
old. Liveness follows from Theorem 2: honest majority ensures block production and finalization
progress.

Attack 1: Long-Range Attack. An adversary with old validator keys attempts to construct an
alternative chain from a historical fork point.

Defense: Finality checkpoints prevent rewriting history beyond the latest finalized block. The
slashed_epochs set permanently excludes compromised validators from future participation.

Bound: The adversary must control ≥ 𝑛/3 validator keys that were active at the target epoch.
Since slashed validators are removed, this requires compromising currently active validators.

Attack 2: Nothing-at-Stake. A validator produces blocks on multiple competing forks simulta-
neously.

Defense: The double production detection mechanism identifies two valid blocks (𝐵1, 𝐵2) from the
same producer in the same slot. Upon detection, the validator’s entire utility score is slashed and
they are deactivated.
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Bound: Expected gain from equivocation is ≤ ̄𝑓block (one block’s fee). Expected loss is 𝑢𝑖 (entire
utility score). Equivocation is irrational when 𝑢𝑖 > ̄𝑓block, which holds for any validator that has
produced more than one block.

Attack 3: Utility Score Inflation. An adversary submits fraudulent utility proofs to inflate
their score.

Defense: Utility proofs require verifiable evidence (on-chain payment receipts, attestation signa-
tures, bridge proofs). Each proof type has independent verification criteria that cannot be forged
without performing the underlying work.

14.3 Privacy Security

Ring Signature Anonymity. With ring size 𝑛ring = 11, the adversary’s advantage in identifying
the true signer is:

Advanon
𝒜 ≤ 1

𝑛ring
+ 𝜖decoy

where 𝜖decoy captures information leakage from imperfect decoy selection (amount and timing cor-
relation). The decoy selection algorithm bounds 𝜖decoy by enforcing 20% amount variance and 3x
age ratio constraints.

Commitment Security. By Theorems 5 and 6, Pedersen commitments are perfectly hiding and
computationally binding under the discrete logarithm assumption.

Key Image Collision Resistance. Two distinct secret keys 𝑥 ≠ 𝑥′ produce distinct key images
with overwhelming probability, since 𝐼 = 𝑥 ⋅ ℋ𝑝(𝑥𝐺) ≠ 𝑥′ ⋅ ℋ𝑝(𝑥′𝐺) unless the adversary can find
a collision in the hash-to-point function.

14.4 Bridge Security

Threshold Security. With a 𝑡-of-𝑚 committee (default 3-of-5), the adversary must compromise
≥ 𝑡 members to forge a bridge operation.

Maximum Extractable Value. In the worst case (committee compromise), the adversary can
extract at most:

𝑉max = min(𝑉epoch_limit, 𝑉locked)

where 𝑉epoch_limit = 109 is the per-epoch volume cap and 𝑉locked is the total value locked in the
bridge. Cooldown periods for large withdrawals provide additional detection time.

14.5 Known Limitations

Limitation Planned Mitigation Timeline
Hash-based VRF (not EC-VRF) Upgrade to ECVRF [7] v0.2
Bit-decomposition range proofs Bulletproofs [13] v0.2
Simplified ring signature verification Full CLSAG [11] v0.2
Single-node testnet Multi-node deployment Q2 2026
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Limitation Planned Mitigation Timeline
No formal verification TLA+ model checking Q3 2026

15. Roadmap
Completed Phases

Phase 1 — Core State Machine. Block structure, Merkle trees, 11 transaction types, agent
identity (AgentDID) and reputation system, PoU consensus skeleton, privacy primitives, account
state model, sled-backed persistent storage, genesis configuration.

Phase 2 — Cryptographic Primitives. Ed25519 transaction signatures, Curve25519 stealth
addresses, SAG ring signatures on Ristretto, Pedersen commitments with range proofs, Argon2 +
AES-256-GCM key management, HKDF hierarchical derivation.

Phase 3 — Networking. libp2p node with TCP + Noise + Yamux, mDNS and Kademlia peer
discovery, GossipSub message propagation, chain synchronization protocol, JSON-RPC server.

Phase 4 — Production Consensus. VRF-based leader selection, 400ms slot timing, 100-block
epoch transitions, 2/3 finality gadget, heaviest-utility fork choice, four slashing conditions.

Phase 5 — Bridge System. Base, Solana, and Ethereum bridges with threshold committee,
fraud proofs and challenge system, rate limiting and cooldown, emergency pause, cross-chain x402
payments.

Phase 6 — WASM VM. wasmi-based execution, gas metering, contract deployment and storage,
host function interface.

Phase 7 — Privacy Hardening. Production ring signatures, view key grants and scanning,
decoy selection algorithm, key image persistence, private x402 payments.

Planned Phases

Phase 8 — Testnet Launch (Q2 2026). Multi-node testnet, Docker Compose orchestration,
block explorer, Python and TypeScript SDKs, testnet faucet, monitoring infrastructure.

Phase 9 — Mainnet Preparation (Q3 2026). Formal security audit, Bulletproofs upgrade,
ECVRF upgrade, performance benchmarking, governance framework, developer documentation.

Phase 10 — Mainnet Launch (Q4 2026). Zero pre-mine genesis, bridge activation, validator
onboarding, multi-language SDK releases.

16. Conclusion
AgentChain presents a blockchain protocol designed from first principles for autonomous AI agent
operation. The Proof of Utility consensus mechanism aligns validator incentives with network-
beneficial work. The CryptoNote-derived privacy architecture provides transaction confidentiality
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through ring signatures, Pedersen commitments, and stealth addresses. The native x402 pay-
ment protocol enables atomic micropayment exchange without smart contract intermediation. The
threshold-secured bridge system provides interoperability with existing blockchain ecosystems.

The implementation comprises approximately 10,700 lines of Rust across 12 modules with Ed25519
signatures, Ristretto-group ring signatures, Pedersen commitments, libp2p networking, sled-backed
storage, and a WebAssembly contract runtime.

Formal analysis demonstrates that the consensus mechanism provides Byzantine fault tolerance
for 𝑓 < 𝑛/3 adversarial validators, and game-theoretic arguments establish incentive compatibility
of the validator reward structure. The privacy architecture provides information-theoretically hid-
ing commitments and computationally unforgeable ring signatures under standard cryptographic
assumptions.

The development path from the current implementation to mainnet requires hardening the cryp-
tographic primitives (Bulletproofs, ECVRF), scaling the network (multi-node testnet), and acti-
vating bridge infrastructure. Each phase advances the system toward its design goal: providing
autonomous AI agents with sovereign, private, and self-sustaining economic infrastructure.
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